HYDRODYNAMICS OF A TWO-PHASE STREAM
IN THE DISPERSED ANNULAR FLOW REGIME

B. I. Nigmatulin UDC 532.529.5

Within the scope of a three-velocity, three-temperature, one-dimensional steady model we consider
the hydrodynamics of dispersed annular, two-phase flows in cylindrical channels, characterized by the con-
current motion of an adhering liquid film and the core, or main body of the flow, which, in its turn, consists
of a mixture of gas (vapor) and liquid droplets. It is assumed that each component of the mixture has its
own velocity and temperature. Taken into account were phase transitions, the inhomogeneity of bulk ve-
locities in the core and the film, and stripping of droplets from the surface of the film as well as precip-
itation onto it. For a description of the core of the flow, ideas developed in [1] were used. The equations
obtained were applied in the determination of the pressure drop, the distribution of liquid between the film
and the core of the flow, the slippage between phases, and the length of the stabilization interval. Concur-
rent motion of gas and liquid in a single channel with and without heat exchange is widely employed in power
engineering and in the chemical industry. In such processes the dispersed annular regime of two-phase
flow occurs over a wide range of variation in pressure and specific mass flow rates of the mixture atratios
of the mass flow rate of the vapor to the common flow rate of the mixture greater than 0.1-0.15, and this
has been studied in many papers. General questions on the hydrodynamics of gas-liquid mixtures, applied
in particular to a study of the motion of a two-phase flow in circular tubes, using hydrodynamic equations
written for the mixture as a whole, were considered in [2]. In [3] the phenomenon of critical heat exchange
in the flow of steam-water streams through tubes and in [4-6] hydraulic resistance were studied. Papers
{7, 8] are devoted to the measurement of tangential stresses on a solid wall during flow of a two-phase cur-
rent by the electrochemical method. Flow regimes of two-phase streams are considered in [9]. Mass ex-
change and slippage between phases are investigated in [10-13]. The character of the motion of a liquid
film is studied in detail in [14]. Among existing models describing the flow of two-phase streams through
tubes, the model in [15] should be pointed out. However, in this model, as in many others (for instance,
Levi's model), the distinction between the liquid in the core of the flow (in the form of dropiets) and the lig-
uid in the film (which move with substantially different velocities) is not taken into account. This leads,
on the one hand, to incorrect results on the velocities of the phases, and on the other, to the inapplicability
of this model in the description of phenomena in which the liquid film is an important factor (for example,
investigation of hydraulic resistance and critical heat exchange, which is related to the desiccation of an
adhering liquid film).

1. Derivation of the Basic Equations. Suppose that a vapor-liquid mixture is flowing in a straight
channel in the dispersed annular, stationary flow regime. We shall investigate the motion of such a medium
under the usual assumptions made in the study of multiple-phase continuous media. We assume that in the
core of the flow there is a second gas consisting of liquid droplets. The velocities and temperatures of the
three components of the mixture (vapor, film, and droplets) can be different, and mass transfer between
the phases is possible. There can be vaporization and condensation on the droplets and on the liquid film,
and also stripping of droplets from the surface of the f{ilm and condensation onto it.

Everywhere in what follows parameters relating to the gas, the liquid film, and the droplets will be
denoted by subscripts 1, 2, and 3, respectively.
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Equations in differential form expressing conservation of mass for the vapor, the film, and the drop-
lets are as follows:
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Here mj (j=1, 2, 3) is the flux of the j-th component of the mixture through a perpendicular cross
section of the channel Bijs p] ) U M gre respectively the mean and the actual densities and the mean flow
velocity of the j-th component of the mixture; o is the spatial volume of the gas (vapor) in the core of the
flow; Fy(z), Fo(z) are the portions of the cross-sectional area of the channel that are occupied by the core
of the flow and by the liquid film respectively, with Fy(z) + Fy(z) =F, where F is the area of the perpendic-
ular cross section of the channel; and Jk;j (k, j=1, 2, 3; k# j) are the intensities of the processes of mass
transfer between components of the mlxture Jk = 0 being the amount of matter of the k-th component chang-
ing into matter of the j-th component per unit t1me per unit length of the channel. Here, following [1], mass
transfers between media are by convention divided into two reactions (each of which, from kinetic consid-
erations, has a forward and a reverse reaction). The necessity for this division is related to the fact that
the mass transfers k— j and j—~k can lead to different changes in the momentum and energy of specific
components of the mixture.

Adding Egs. (1.1), we obtain the equation of conservation of mass for the whole system

Projected on the z axis, the equation of conservation of momentum for each medium separately is,
account being taken of (1.1),
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Here uj(u) {i=1, 2, 3) is the mean momentum velocity of the j-th component of the medium; f is the
interaction force between the gas and the droplets, referred to a drop as unit of mass, because the veloc-
ities of the phases in the core of flow do not coincide (friction, added masses, Magnus force, etc.); fy, is
the frictional force on the surface separating the liquid film and the gas (this force can be equated fo its
axial component because the cross section through which the main body of the flow passes widens slowly,
it being assumed that the thinning or thickening of the film along the length of the channel proceeds suffi-
ciently slowly); and fw is the frictional force between the liquid film and the solid wall of the channel. The
terms Jijuk; (k, j=1, 2, 3; k# j) represent the respective momentum changes of the various components
of the mixture due to mass transfer from the k~th to the j-th component, ugj being the velocity of the k-th
component at the separation boundary between the k-th and j-th components of the mixture. The last terms
on the right-hand sides of Eqs. (1.2) are the projections of the body forces on the z axis.

Adding the appropriate equations of (1.2), we obtain the projection on the z axis of the equation of con-
servation of the momentum of the entire mixture
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In a manner similar to that used in connection with (1.2) one can obtain the equation for conservation
of the energy of the entire mixture
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Here ej, ejo, uje are, respectively, the mean and the actual internal energy and the energetic velocity
of the j-th component of the mixture, and qy, is the external heat influx per unit time per unit length of the
channel.

We write down equations for the internal energy of the film and the droplets, considering the droplets
and the liquid film to be incompressible, p,8=p3?=const, since the work of pressure forces from the vapor
on the deformation of the droplets and film is equal to zero. The surface energy of the liquid film and the
droplets can also be neglected.

The internal energy of the film and the droplets will change on account of heat influx, heat exchange
processes, and energy dissipation due to the action of interphase frictional forces. Moreover, the internal
energy of the film changes on account of energy dissipation resulting from friction on the wall of the chan-
nel. Thus the equations for the internal energy of the film and the droplets have the form
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Here qy is the heat exchange between the film and the gas per unit time per unit length of the channel;

qj3 is the heat exchange between the gas and the droplets, referred to the unit of mass of the droplets;Jijek;
k, =1, 2, 3; k= j) is the change in internal energy of the film or the droplets due to mass transfer from
the k-th to the j-th component of the mixture; and ekj is the internal energy of material undergoing a tran-
sition from the k-th to the j-th component. The last terms in Egs. (1.4) are equal to the work of pressure
forces of the gas on the condensing and vaporizing matter.

Together with the equations of state, the assumptions regarding u[{j, ekjs the relationship between
uj™, uj, u;®, and the relationships for fi,, fw, S, Jkjs da1, %3, the system of differential equations (1.1)-
(1.4) form a closed system in a region of continuous flow.

2. Relationships among Parameters on the Separation Boundary between Components of the Mixture
and Averaged Characteristics of the Flow. For uy, us, €9, €43, €9, €5 it is natural to make assumptions
similar to those in [1]:

— j— © — - — j— d
Ugy = Uyg = Ug™y €19 = €3 = €9y €3 == €3 = €13

Here the lower index s refers to the saturated state. As for uy,, Uy, Uys, Ug, €93, €39, We @assume the
_following:

7 — .
Uyy = Uy, Ueg = Uy , Ugy = Ug¥, €35 = €3

In order to obtain a relationship between uj™, ujt, uje, uy' and uyM, e,5,and e, it is necessary to pre-
scribe velocity and temperature profiles in the film and in the core of the flow.

In the case of turbulent flow in the film [16] at Reynolds numbers R, > 300-400(R, =u,™&/y,, where
0 is the thickness of the liquid film and v, is the coefficient of kinematic viscosity of the liquid) and of tur-
bulent flow in the core it can be assumed that the velocity profilelconforms to the step law

uk—-uz' . 9 n (k: 3 0 D — 28
—ot.u—zf.'“(i“ D—ZB) b3 0Sr<s=5—),

ur (2.1)
UZ:B(']-—‘%—)“E (0—226 <r<%>
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7 where D is the diameter of the channel, B and uk"’ are constants, while nj=
05 \\\ Yy (i=1, 2, 3).
\\§\ Then within an accuracy of O(nj?) and O(n,6/D)
O 7 AN , m
2.2} 4 b\:\{]\l\ﬁ " =uit =uf=uy (=123, u =(1+n)u, (2.2)
‘ e For laminar flow of the film (R, < 300~400)
Ay 2.6 X do = B (1 — & | D?)
Fig. 3 In this case
U =4y, wy = 2uy", U =u," Y2 (2.3)

From (2.2) and (2.3) the unified notation
U = @y, Uy = agu,™, Uy’ = agu,™
follows.

3. Interaction between Components of the Mixture. In order to close the system of differential equa-
tions obtained above it is necessary to obtain relationships for the strong interaction between components
of the mixture (fy,, f, fw), thermal interaction (qy, qi3, qy), and the mass exchange between the media Jkj
(k, j=1, 2, 3; k= j). All these processes are complicated and still require detailed study. For their de-
termination it is necessary to know the flow regime and the constitution of the film (the structure of its
surface, the relationship between its wave characteristics and the thickness 6 and velocities of the phases,
etec.), the constitution of the droplets (shape of the droplets, their dimensions, etc.). The frictional force
between the gas and the film can be represented in the form

fia = Yy Coam (D — 28) p,° (ug — us)?%, Ciy = Cyy (87 D, Ry, Ry),
R, = (u, — uy") (D — 28) / v,

where vy is the coefficient of kinematic viscosity of the vapor.

(3.1)

The friction between the gas (vapor) and the film is directly related to the flow regimes of the sur-
face of the liquid film, which are determined by the velocities of the phases and the thickness of the film.
By convention these regimes may be divided into three types: a wave type with large-scale waves,aripple
wave type, and a smooth-film regime. A thorough experimental investigation of the flow regimes of the
film surface and of the demarcations between them is still needed. Direct measurements of the tangential
stresses on the separation surface between the gas and the liquid film when the processes of stripping mois-
ture from this surface and precipitation upon it are occurring do not seem possible at the present time.
We remark that the measurement of the tangential stresses on the separation surface between the liquid
film and the solid wall of the channel is possible, for instance, by the electrochemical method [7, 8].
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The coefficient of friction depends principally on the nature of the damping of the waves in the same
way as this would take place in rough tubes, since the core of the flow moves as if it were in a channel with
liquid walls.* However, their "roughness" varies markedly over a wide range, depending on the flow re-
gime of the film and of the core of the flow.

The coefficient of friction for flow of a single-phase fluid in a rough tube is approximated by [18]

C, = [2.28 —4lg(e) D—5y*/ D)%, &/y*>12
C; = 0.0008 -+ 0.0553R" ™", e/y*<5 (3.2)

For 5<&/y*<12 a linear variation between values given by the first and the second of the formulas

can be taken. Here € is the height of a protuberance in the sand-roughened pipe and

D 2
* =
¥ =& Cy

As a first approximation we assume that (3.2) is valid for Cy,, the magnitude of the roughness being
variable, and we take it to be equal to the thickness of the film [5]
& = 1’]6, n=n (67 R,y

On the basis of an analysis of experimental data on hydraulic resistance in flows of gas-liquid mix-
tures through tubes [5] the mean value n=6 can be obtained for the flow regime of a film with large-scale
waves. In the flow regime of a film with ripples 5 falls to 0.6~1.0 [5, 6].

In the case of large Reynolds numbers for the film (R, >103) the influence of R, on n can evidently be
neglected and the dependence on 6 can be represented as
n=N;—Nyexp[(V; — 8 Ny (M =6, Na=5,5)
where N;, N, are constants, determined more accurately through comparison with experimental data on
hydraulic resistance.

When the liquid film becomes very thin there is the possibility of its disintegration [19]. Without go-
ing into details of the disintegration process at this stage, we assume that, when the film becomes thinner
than a certain constant thickness 6°, it disintegrates and turns into a dry patch. According to the estimate
of [19] 6°=20~50 p. In this case the vapor (gas) moves partly along a wet, and partly along a dry wall, and
therefore by convention an expression for the frictional force is then constructed from a combination of
(3.1) and f, = C,;mDp,°u,¥2, for instance, one of the form

fm' = f12 — (fre — 1) (6° - ‘5) /6°

We represent the frictional force between the liguid film and the solid wall of the channel in the form

fo= CwnDpz"uzm /2, Cup=Cy(Ry338/D)

*The assumption that processes occurring in the flow of a gas around individual waves on the surface of
a film are similar to those that occur at protuberances of a rough surface was first made as far backas [17].
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The coefficient of friction Cy, depends on the flow regime of the liquid film. For a smooth tube in
the case of the regime of developed turbulence in the flow of the liquid film R, >1000 [20], one can obtain

from (2.1), taking n, =1/,
\ Cy = 0.0570 ) RS (3.3)
For laminar flow of a liquid film (R, < 400)
Co=4/Ry (3.4)

As a first approximation, a linear interpolation between (3.3) and (3.4) can be taken in the transition
regime 400< R, <1000.

Of the forces acting from the gas on the droplets the most significant is the frictional force under
the conditions considered here, and this can be represented as

_ 3 P Cis (m—uy) [ —us|d
=T e 4 Tw—us| (013——-013(1?13.&), R18=_—,VT——)

where d is the diameter of the droplets.

As a first approximation it can be assumed that the spatial concentration of the droplets is sufficiently
small that the influence of @ on Cy; can be neglected. For C,; the following functional relationship is rec-
ommended [21] over a wide range of the Reynolds number Ry

Cyo = 24R3; + 4R3™, 700> Ry >0

The force due to the effect of apparent additional masses can be neglected for d=10~% m and ps"/pf >
10 [1], and the projection of the Joukowski force onto the z axis vanishes.

The appearance of droplets in the core of the flow is due to the stripping of liquid from the crests
of the large-scale waves {14]. Therefore the characteristic stripping rate is (y —"uz'). Fractionization of
the droplets is usually estimated by use of the Weber number W, characterizing the ratio of dynamic ef-
fects to the capillary pressure

© (ur — w')2d
Ws — P (1 62“2)

Here o, is the coefficient of surface tension of the liquid composing the droplets. In [22] considera-
tions based on an approximate theory of elliptical deformation of the droplets due to an instantaneous ap-
plication of the forces resulting from the flow around them yielded the characteristic number Wy*=5.4,
corresponding to their disintegration. We assume that droplets for which the Weber number exceeds this
characteristic value disintegrate into droplets of smaller diameter with the same total mass, the diameter
now corresponding to this characteristic value of the Weber number.

To estimate the intensity of precipitation J;, we can use the empirical formula of {10]

J3a = 0.089 (D — 28) p,® (us — u,") (_gj_)"'“ B, Ry~ Q;‘@v(r_:u_) (3.5)
Expression (3.5) is written in terms of the variables used in this paper, the characteristic velocity
being taken as ug—u,', and not uy. (In {10] the precipitation of droplets on an immovable wall was studied.)
It should be remarked that, applying this empirical relationship for the intensity of precipitation, into which
the diameter of the droplets does not enter, and keeping in mind that in the core of the flow the droplets
move with a velocity close to that of the ambient medium, one can conclude that the diameter of the droplets
has little influence on the solution of the system.

The process of stripping of droplets from the surface of the liquid film has been studied in many pa-
pers, in particular [5, 11, 14]. In most of this work the intensity of stripping of the liquid equalizes that
of the precipitation, though this is true only in the case of equilibrium. We define the equilibrium case as
a state of the system in which the velocities of the components of the mixture along the tube do not vary
(for flow of the mixture in an unheated channel). It has been shown [11] that for comparatively thick films
the gas velocity at which stripping begins depends only on the surface tension o, of the liquid and not on its
viscosity. Therefore, in this case, it can be assumed that the transition from a flow regime of the filmwith-
out stripping of droplets to one with stripping is determined by equality of the dynamic pressure of the lig-
uid at some point of a wave crest and the capiliary pressure at the same point:
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where h is some constant factor. Consequently the condition for the onset of stripping is determined by
the Weber number W,

© (1707\2
W2= P2 (7:;) [1}

. And the stripping of dropléts will obviously proceed with greater intensity, the greater the divergence
of the value of W, from some critical value W,*,

In first approximation we can employ a linear relationship connecting the intensity of the stripping
with the divergence of W, from W,*,

J: .
n(D—Z:S);:“(ul-—uz') =AW, —W,*) (Wa>W» Jis=0 W <Ws®)

At the same time, analysis of stripping phenomena with invocation of dimension theory suggests the
following expression for the proportionality coefficient A:

A =2/ 0) g — wy') /w1

where y, b, m are constants. Together with W,* these constants can be estimated, for example, from ex-
perimental data on critical heat exchange of the second kind in a heated tube, this being related to the des-
iccation of the adhering liquid film. From these data [3] one determines values of the mass flow rate vapor
content Xpp° (i.e., the ratio of the mass flow rate of the vapor to the common mass flow rate of the mixture
in the channel) at which complete desiccation of the liquid film occurs, and also values of the mass flow
rate vapor content Xap at which a change in flow regimes of the liquid film occurs: from a regime with
stripping of liquid from its surface to a regime where this stripping ceases. Knowing the increment in
vapor content due to vaporization of the liquid film, one can estimate the flow rate in the film both at the
entrance to the heated portion of the experimental region and at the moment when the regimes change. It
has been shown experimentally that for relatively high heat fluxes gy, precipitation of droplets on the film
does not occur because they are blown off by the vapor that is evaporating from the film.

The constants u, n, and m can be determined from data on the flow rate of liquid in the film. By use
of certain considerations [13] concerning the relative slippage uj/u,™ the value of W,* was estimated, which
was found to be in the range 20-50. Reference [4] gives results of a systematic study of the hydraulic re-
sistance in flow of a vapor—water mixture in tubes with and without an external heat supply, the pressures
at the entrance having a range of p=49-196 bar, and the specific mass flow rates of the mixture being in
the range w=500-2000 kg/m? - sec. In the regimes indicated above a two-phase mixture can be considered
within the scope of a three-velocity, but still a single-temperature, model, where the temperature of the
mixture in every cross section of the channel is equal to the saturation temperature Tg for the pressure
at that cross section. Neglecting the variation in internal energy of the film and that of the droplets with
distance along the channel (because of the smallness of the ratio Ap/p, where Ap is the pressure drop over
some characteristic distance) and the variation in the internal energy of the film due to the work of fric-
tional forces, we obtain from (1.4)

Jon =g/ 1 Jip=Ji5 = J5 =0

For the components of the mixture we take the simplest equations of state, namely the equation of
state of an ideal gas for the vapor (gas) and the condition of incompressibility for the liquid.

4. Equations for the Solution of the Problem. Thanks to the simplifications made above, we obtain
a system of six differential equations of motion together with a known relationship for Tg=f(p). The Cauchy
problem for this system is to be solved in the case of an ascending, dispersed,annular, two-phase flow in
a vertical channel.

We convert to dimensionless variables

dm; Uy 28 2z
PR S—— ;== El 7 === = = —_—
M;= or°upentD ? U; U1 (=123, 8 b z =D’
Tk 2Jm T F = 2J23 % 2 s __ D
27 punD ! 27 ofuD T3 T plfuD ? T Zuw?
FACI. . NI . 2
12 prPwe?D? ¥ p°u102D ? p2°u10?
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Here quantities distinguished by the subscript 0 correspond to initial data at Z =0. The equation of

state of the vapor has the form
0:° = p1’ PTo/ PoT

We write the system of equations of motion in dimensionless form:

cc(i——é*)z dU1 _2U1a(1~§*) o —}—Ul(i——é*)”i“—_J

au Ja2® — Ja* — Jas*
(26*—-5*2) 2 + 20, (1—6*) dZ e

(1 —ay(t —spLs 7 —20—a)(— 80U, 2
_ Jnt — T

"(1"‘5*)203@ - 2
a( =820 S L ha(t— o2 20—,
0y (28% — 8% U, = ””’2 (@ — 5+1) 2 — %
dU.
A=) =8P U (a1 — s & = 2 (4.1)
Here
b‘1 =kl —a)(1 —8*P2f* —f,* + Ty * U —U) — La(1 — §*)2
by = f1o* — fo — J* (Uy' — a,U,) — S 3 (U, — a.Us) +
F- Ta* (U — a,U,) — L (28* — §*2)
by = k(1 — ) ( — 8*2 f* 4T3 (U, — Uy) — kL (1 — o) (1 — B)2
k=p"7p7 L = nDg { 2u,*, - &= 9.81 m/sec?
The system (4.1) has one first integral for mass
My, + My, + My, = S = const
from which we obtain
S —k[Ua(20% —§%) 4 Us (1 — 6%
%= (U1 — k05 (1 — o%p
Solving (4.1) for the derivatives, we obtain
daUy Gy dUz Ge dlUs Gz
dZ T Ga(I—8%F’ TdZ T Gk (25*—0%°' dZ T Gkl —o(d—07)
dé* 1 G
bz = m[-fsz* —Jzi*‘—st*"‘G_j]
(4.2)

% -4 [41""1’1UzéUs2 + bU U + a;,b,U,*U 2 —'axUleUsbﬂ
= U {0, {(26* — 8*) Us® + (1 —a) (1 — 8% a,U,% —
—o(1 —8*[5,U% + a,b5U %} + ao (1 — %2 U,Ush,
Gy = U, (b, [ha(1 = 8¥2 U2 4 (1 —a) (1 — §*2 U] —
— (26% — 8*%) [byU 2 - kb, U]} + (26* — 6*2) U, U 3b,
Gy=U; (b, [(28* — 6*3) U 2+ a ko (1 — 8% U2 — (1—a)(1 — 8%) [ka,b,U >+
+ szlzl}/_‘_ a (1 —a)(1 —8*R U U b,
Gy = (26* — ") U LU + oy (1 — 8% [hall 2 + (1 — ) U2)
by =kJ 0 *UyUs + (Joy* — In* — J35*) UrUs + (Jo5* — J,*) UL U,
The system (4.2) was integrated numerically with fixed values of Py, w, and x at the entrance of the
channel under various injtial conditions in order to study their influence on the equilibrium distance, i.e.,
the distance at which a state of the system is established where the velocities of the components of the mix-

ture do not vary along the channel. The calculations were carried out for flows of the mixture in an un-
heated channel. Data on the thermodynamic properties of water and water vapor were taken from [23]. Cal-
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culation of the problem was performed up to the cross section where an equilibrium state of the system
was established. The pressure gradient at this cross section was compared with the pressure drop per
unit distance along the channel obtained in [4], leaving body forces out of account. By matching results with
the experimental data for p=49 bar, w=2000 kg/m? - sec, p=98 bar, w=2000 kg/m? - sec, and D=8 mm, a
refinement of the values of Ny and N, was obtained (Ny=60 y, N;=4-10"° y-1).

" From a comparison with experimental data on the critical heat exchange for the same regimes the
following values were obtained:

%#=0110%n= =10, m = ~025

The film thickness at which disintegration begins was taken to be 6° =50 ;. Values of the constants
obtained here cannot be considered to be final. Their further refinement requires a comparison of numer-
ical and experimental results for various characteristics of a dispersed, annular, two-phase flow, in par-
ticular with a direct measurement of the flow rate of the liquid in the film over a wide range of variation
in the regime parameters. Regrettably, data on the flow rate of liquid in a film are very meager at the
present time,

5. A Few Results. Figures 1-5 show a few results of the numerical integration that illustrate the
influence of p, w, and x on various flow characteristics of a dispersed, annular, two-phase flow in an un-
heated channel.* ‘

Figure 1 shows results of calculations and experiments [4] on the hydraulic resistance for vapor—
water flows in a smooth vertical tube with diameter D=8 mm. The specific mass flow rate x of the vapor
content is plotted along the horizontal axis and the relative pressure drop II is plotted along the vertical
axis, the latter being equal to the ratio of the pressure drop in a two-phase flow due to friction and mass
exchange between phases, disregarding pressure variations resulting from the action of body forces, fo
the pressure drop due to friction in a flow of water at the saturation temperature

ar /[4e
ne[F] /[E
Curves 1, 2, 3, and 4 correspond to pressures of 49, 49, 98, and 98 bar, curves 1and 2 being cal-

culated for w =1000 kg/m? - sec and the others for w=2000 kg/m? . sec. Thus it is evident that, within the
limits of the model under consideration, calculation of the influence of w on II is a success.

For p=98 bar, w=1000 kg/m? - sec, x=0.2, and D=8 mm, Fig. 2 shows an example of the variation
in the characteristics of dispersed annular flow as a function of distance from the entrance to the channel
and various initial conditions.

We note that the distance at which the equilibrium state is established (this being at the cross sec-
tion where there is equilibrium,Js~ Jy3) depends strongly on the velocities of the components of the mix-
ture. For comparatively low values of w and x this distance is larger than it is for large w and x. This
agrees completely with the data of [11]. The equilibrium distance decreases with an increase in pressure.

In Fig. 3 values of the relative flow rate of liquid in the film p =m;/(m; +m, +m;) obtained numer-
ically are compared with the experimental data of [12], where the flow rate of liquid in the film was mea-
sured as a function of w and x at p=69 bar and D=12.5 mm at a distance 200 D from the entrance to the
tube (points 1 correspond to w =544 kg/m? - sec, and points 2 to w=950 kg/m? - sec). In these experiments
conditions at the entrance were such that at the initial cross section most of the liquid was in the core of
the flow. The solid curves refer to the equilibrium cross section and the dashed curves refer to the cross
section of the channel where the measurements were made, that is, at a distance of 200 D from the en-
trance. The calculations were carried out for the case where all the liquid was in the core of the flow at
the initial cross section. From Fig. 3 it is clear that results of the calculations agree fairly well with the
experimental data.

Figure 4 exhibits the dependence of 6* on x. The dashed curves 1 and 2 interpolate the experimental
data of [11] for a two-phase, argon—water flow in a vertical tube with D=25 mm, p=21.4 bar, at roomtem-
perature, for values w=1000 and 2000 kg/m? -sec, respectively. The solid curves display this dependence,
obtained numerically under the same conditions, at a distance of 5 m from the entrance. From the experi-

*A separate paper by the author will be devoted to an investigation of characteristics of flow of a dispersed
annular stream in a heated channel.

914



mental arrangement in [11] it is difficult to estimate the conditions at the entrance. Calculations were car-
ried out for the case where all the liquid was in the core of the flow at the initial cross section. Neverthe-
less it can be seen that there is good qualitative agreement between results of the calculations and the ex-

perimental data.

Figure 5 shows the influence of w and x on 6* and on the slippage S;, =u;/u,™ for p=98 bar and D=
8 mm. Here the curves 1, 2, and 3 for 6* and S;, refer respectively to w=500, 1000, and 2000 kg/m? - sec.
The dashed horizontal line corresponds to the value 8, = (p2°/p1°)1/3' for annular, two-phase flows proposed
in [13]. Obviously such a simple dependence cannot approximate the data on slippage, which depends not
only on the pressure, but on x and w as well.

Thus, for many characteristics of dispersed annular flow fairly satisfactory agreement with the ex-
perimental data of various authors has been obtained, notwithstanding the approximate character of certain
estimates. Of course, this agreement could, to some degree, be a result of mutual influence of the assump-
tions that were made. But at the same time the approach we have developed also enables us to estimate
the effect of various processes and interactions on the general picture of the flow in a dispersed annular
stream. For instance, as a result of the numerical integration of the system (4.2), we can note that the
constants entering into relationships for the force of friction f,, and the intensity of stripping from the film
surface Jy; influence the flow characteristics fairly independently of one another. The first influences the
pressure gradient strongly, while the second affects the flow rate and thickness of the liquid film. An in-
vestigation of the influence of the value of the critical number W,*, which characterizes the onset of re~
moval of moisture from the film surface, was carried out. It was found that a decrease in W,* from 40 to
15 has little effect on characteristics of a dispersed annular flow. We also remark that our constructive
procedure makes it possible, on the basis of quantities that are easily measured experimentally (w, II, Js,

x), to obtain parameters and relationships for various processes in two-phase, dispersed, annular flows
that would be difficult to determine experimentally, especially at high pressures and temperatures (uj, mj
(j=1, 2, 3), 6, @, Jy;, equilibrium distance, etc.).

In conclusion the author thanks V. E. Doroshuka and 8. S. Kutateladze for useful discussions andval-
uable comments.
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